If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2=88
We move all terms to the left:
10x^2-(88)=0
a = 10; b = 0; c = -88;
Δ = b2-4ac
Δ = 02-4·10·(-88)
Δ = 3520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3520}=\sqrt{64*55}=\sqrt{64}*\sqrt{55}=8\sqrt{55}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{55}}{2*10}=\frac{0-8\sqrt{55}}{20} =-\frac{8\sqrt{55}}{20} =-\frac{2\sqrt{55}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{55}}{2*10}=\frac{0+8\sqrt{55}}{20} =\frac{8\sqrt{55}}{20} =\frac{2\sqrt{55}}{5} $
| 12n=7+4 | | 3(3u-6)=6 | | Y=x(-10+55x) | | (2x+12)=3x+2=180 | | 1=1/3x-3-8 | | Y=(-10+55x) | | x+0,2x-624=0 | | 4t+12=t^2 | | (-1x-1)=0 | | 3(6-f)-4=-3f-4 | | 17=w88 | | 36x=24x+2 | | 17=w(88) | | -13n=-260 | | 1/3(c-4=12 | | x-13.4=8.61 | | -11=a/18 | | 2.7=4.3-0.2x | | -220=11x | | 6x-18=14x+28 | | 6(y+9=24 | | 25+d=465 | | 4.5(x+3=9.9 | | 8y+5/7=9y+2/7 | | 12=k+14 | | 1+v=1+4v+4v | | -a=7=2a-8 | | 10+3=6y+12 | | 2x+27=5x-30 | | (5x-1)(2x-4)=0 | | 6(y-4)=3(y=9) | | 1+2n=5+3n |